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Abstract The communication theory of the chemical bond is extended to the local
description of electron distributions in molecules. The key concepts of the molecular
information channel in local resolution as well as its average-“noise” (conditional-
entropy) and information-flow (mutual-information) descriptors are introduced. For
a given electron density the information propagation in molecular communication
system is compared for the Hartree system of non-interacting spin-less particles, the
Kohn–Sham system of non-interacting fermions, and the real molecular system of
interacting electrons, in order to separate the effects due to the exchange and Coulomb
correlation. The stockholder partition of the molecular electron density into pieces
attributed to atoms-in-molecules (AIM) is used to explore the effects due to the inter-
and intra-atomic scattering of the electron probability in the local description. In this
atomic resolution of a diatomic molecule several illustrative molecular information
systems are investigated, which differ in the admissible level of the information scat-
tering between infinitesimal local volume elements. First, the parallel arrangement of
the AIM sub-channels, which allows only for the intra-atomic non-local probability
scattering, is examined and the relevant grouping-rules are established for combining
the atomic entropy/information data into the bond indices of the molecule as a whole.
Next, the vertical Hirshfeld channel, admitting only the inter-atomic, local scattering
of the electron probability, is used to probe the entropy non-additivity in both the mole-
cular and promolecular systems. Finally, the truly non-local channel of independent
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atoms in the Hartree limit is discussed, to extract differences in the entropy/information
bond descriptors due to the inter-atomic probability scattering.

Keywords Atoms-in-molecules · Chemical-bond components · Electron corre-
lation · Electronic structure theory · Entropy covalency · Information ionicity ·
Information theory · Molecular communication systems · Probability scattering in
molecules · Stockholder atoms-in-molecules

1 Introduction

The concepts and methods of the Information theory (IT) [1–4] have recently been ap-
plied to diverse problems in the theory of electronic structure, e.g., [5,6]. The “stock-
holder” principle of Hirshfeld [7] for the local partition of the molecular electron
density into pieces attributed to bonded atoms (Atoms-in-molecules, AIM) has been
justified and extended [5,6,8–12] using the information principle of the minimum of
the promolecule-referenced entropy-deficiency [3] subject to the local constraint of
the exhaustive division. The entropy-displacement and information-distance densities
have been explored in a search for novel diagnostic tools of the chemical bond forma-
tion and the electron localization in molecular systems [5,6,13–15] and the integral
information-distance measures have been applied to quantify the Hammond postulate
of the theory of chemical reactivity [16]. The local IT-thermodynamical description
of the electron equilibria in molecules has also been proposed [17], in the spirit of the
ordinary irreversible thermodynamics.

The AIM-resolved communication theory of the chemical bond has been developed
for both the molecular system as a whole and its constituent fragments [5,18–26]. Its
formulation in the orbital description has also been proposed [27–30]. It covers the
excited-state configurations [29] and bond-indices for separate orbital-transformations
involved in the resultant bond-formation processes [30]. This communication-system
approach probes the bond covalency and ionicity through the probability (information)
scattering in the molecular information channel reflecting the promotion of the con-
stituent free-atoms to their respective valence-states due to the presence of the remain-
ing AIM. The covalent component in this treatment measures the average “noise” in
the communication channel, which lowers the information content of the final (output,
molecular) probabilities, compared to that contained in the initial (input, promolec-
ular) probabilities. The amount of information reaching the output of the molecular
channel, which has survived the dissipation due to the system noise, then reflects the
bond-ionicity present in the molecular system under consideration. These IT bond
indices complement the bond-order measures, which have previously been designed
within the Molecular Orbital (MO) theory, e.g., [31–39].

This probability scattering has been examined in the past at various levels of resolu-
tion of the molecular electron distributions, e.g., atomic [5,18–26] or orbital [27–30].
The entropy/information descriptors of the local Hirshfeld channel have also been ex-
amined [5,14,19,22]. The orbital approach requires the indirect information scattering,
via the probability “chain-rule” involving the effective AO-promotion channel build
as a sequence of the elementary channels representing both the intermediate [27,30]
or resultant [28,29] orbital transformations and the MO-occupations in the electron
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configuration in question. In the excited electronic states the probability-conditioning
between several electron configurations is required to account for a reduction of the
IT bond-multiplicity due to excitations of electrons from the bonding to anti-bonding
MO [29]. A similar IT perspective on the valence-state promotion of AIM due to the
orbital hybridization has also been investigated [27].

In the Density-Fuctional Theory (DFT) [40–42] the ground-state distribution of
electrons represents the basic, local state-“variable” of the molecular system. In this
approach a given position of an electron constitutes a separate electron-localization
“event”, determined by the continuous electron coordinates in the physical space. The
electron probability distribution is then defined by the shape-factor p(r) = ρ(r)/N of
the electron density ρ(r) of the N -electron system. Therefore, in this local-resolution
the summations over the discrete AIM or orbital events of the previous atomic and
orbital developments have to be replaced by the corresponding integrations over the
physical space. The scattering of the electron probabilities also assumes a more direct
description: from one local volume element at r to that around another location r′,
with the probabilities of such an elementary two-point scattering events being mea-
sured by the familiar conditional probability p(r′|r) = p2(r, r′)/p(r), where p2(r, r′)
denotes the joint probability of finding two electrons at the indicated positions. The
AIM-resolution of p(r) or ρ(r) can be subsequently effected using the “stockholder”
principle of Hirshfeld [7], which has also been shown to have a solid basis in IT
[5,6,8–12].

It is the main purpose of the present work to qualitatively examine illustrative mole-
cular information channels in local resolution and compare their entropy/information
descriptors of the system “bond” covalency and ionicity, which reflect the average
communication “noise” and the amount of the information flow, respectively. First, in
the spirit of the Kohn–Sham DFT [41], the three systems will be compared for the given
ground-state density of electrons, which define the Fermi (exchange) and Coulomb
electron-correlation effects in molecular systems: the uncorrelated Hartree system,
of independent (spinless) particles, the hypothetical KS system of non-interacting
fermions, and the real system of interacting electrons. The leading terms of slight
differences in their entropy-covalency and information-ionicity descriptors will be
identified. They should provide novel IT-descriptors of these two types of electron
correlation in molecular systems.

A subsequent stockholder partition of the molecular probability distribution into
the associated AIM densities allows one to examine an extra noise and a diminished
information flow due to this division. It enlarges the sets of “events” and spreads out the
electron probability distributions, thus increasing the electron uncertainty compared
to the global description of the molecular system as a whole. In the local description
the probability-scattering analysis of the chemical bonds between the stockholder
subsystems, which were previously shown to provide attractive concepts for a chemical
description of molecular systems, allows one to separate the intra- and inter-atomic
effects. Several diatomic information systems will be qualitatively examined. First,
the parallel arrangement of atomic sub-channels, with only the intra-atomic non-local
information scattering being allowed, will be investigated and the relevant grouping-
rules will be derived for combining the AIM entropies into those for the molecule as
a whole. The vertical Hirshfeld channel, in which the information scattering between
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stockholder AIM takes place only within each local volume element, will then be used
to extract the entropy non-additivities of both bonded atoms in a molecule and the free-
atoms in the promolecular reference system. Finally, the truly non-local channel of the
independent atoms in the Hartree limit will be used to extract the molecular bonding
patterns reflecting the non-local character of both the intra- and inter-atom probability
scattering, within the local description of the system distribution of electrons.

We start this analysis with a short reminder of key probability concepts in the
molecular electronic structure, including those of exchange (Fermi) and correlation
(Coulomb) holes and the hypothetical and real systems, which allow their separation.

2 Probability distributions and correlation holes

Let ρ2(r, r′) denotes the two-electron density,

ρ2(r, r′) = N(N − 1)

∫
· · ·

∫ ∣∣�∗(r, σ1, r′, σ2, 3, . . . , N)
∣∣2

dσ1dσ2dq3 . . . dqN

≡ N(N − 1)p2(r, r′),
∫ ∫ ρ2(r, r′) dr dr′ = N(N − 1), ∫ ∫p2(r, r′) dr dr′ = 1, (1)

and p2(r, r′) its unity-normalized shape-factor. Here qi = (ri , σi) ≡ i groups the
position (ri ) and spin (σi) coordinates of ith electron, and �∗(1, 2, . . . , N) denotes
the wave-function of an N -electron system in the position representation. The partial
normalization of the joint-probability distribution p2(r, r′) of two electrons gives rise
to the corresponding one-electron probability density p(r), the shape-factor of the
electron density ρ(r):

∫ p2(r, r′)dr′ = p(r) = ρ(r)/N, ∫p(r)dr = 1. (2)

The two-particle densities of Eq. 1 can be expressed in terms of the associated condi-
tional distributions for the fixed position of the reference electron at r, any of N , of
finding the dependent electron, any of the remaining (N −1), at the monitored position
r′:

ρ2(r, r′) ≡ ρ(r)ρ(r′|r), ∫ ρ(r′|r)dr′ = N − 1, ρ(r′|r) ≡ (N − 1)p(r′|r),
p2(r, r′) ≡ p(r′|r)p(r), ∫ p(r′|r) dr′ = 1.

(3)

We have stressed in the preceding equations that the conditional electron density
integrates to (N − 1) dependent electrons, while its shape factor, representing the
associated probability distribution, is unity normalized.

These conditional distributions of the dependent electron are customarily expressed
as the sum of the corresponding independent (spinless) particle contribution of the
familiar Hartree limit and the relevant exchange-correlation (xc) hole:

ρ(r′|r) = ρ(r′) + hxc(r′|r); ∫hxc(r′|r)dr′ = −1,

p(r′|r) = p(r′) + fxc(r′|r); ∫ fxc(r′|r)dr′ = 0. (4)
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As we have indicated in the preceding sum-rules the density-hole hxc(r′|r) excludes
altogether a single electron from around the reference electron (the Pauli principle),
while the probability-hole fxc(r′|r) integrates to zero over the positions of the depen-
dent electrons (see Eqs. 2, 3). It also follows from Eqs. 1–5 that these correlation holes
are related through the following relation:

hxc(r′|r) = (N − 1)fxc(r′|r) − p(r′). (5)

Alternatively, the pair-distribution functions can be used to describe the electron
correlation effects in a more symmetrical manner:

n(r, r′) ≡ ρ2(r, r′)/[ρ(r)ρ(r′)] = ρ(r′|r)/ρ(r′)

= N − 1

N
p2(r, r′)/[p(r)p(r′)] = N − 1

N
p(r′|r)/p(r′) ≡ N − 1

N
g(r, r′),

(6)

where n(r, r′) and g(r, r′) stand for the density- and probability(shape)-pair distribu-
tions, respectively. They are related to the corresponding holes of Eq. 4:

hxc(r′|r) = ρ(r′)[n(r, r′) − 1], fxc(r′|r) = p(r′)[g(r, r′) − 1]. (7)

In the Kohn–Sham (KS) formulation of DFT one examines the so called adiabatic,
ground-state connection between the real (interacting) molecular system and the hy-
pothetical KS system of non-interacting electrons moving in the appropriately defined,
effective one-body potential, for the conserved density ρ(r) of the interacting system.
This is effected by an appropriate scaling the electron-repulsion energy with the cou-
pling constant λ, i.e., of the electronic charge with λ1/2, which gives rise to KS system
for λ = 0, and the real system for λ = 1. The electrons (fermions) exhibit only the
exchange (x), spin-dependent correlation in the KS limit, involving only the spin-like
electrons,

hλ=0
xc (r′|r) = hx(r′|r) ≡ hKS

xc (r′|r), f λ=0
xc (r′|r) = fx(r′|r) ≡ f KS

xc (r′|r), (8)

while the full correlation effects, including those due to the Coulomb, charge-
dependent contribution, is recovered in the real system:

hλ=1
xc (r′|r) = hxc(r′|r), f λ=1

xc (r′|r) = fxc(r′|r). (9)

This allows one to separate the correlation (c) holes:

hc(r′|r) = hxc(r′|r) − hx(r′|r), fc(r′|r) = fxc(r′|r) − fx(r′|r). (10)

Yet another reference system of the non-interacting spinless (distinguishable) par-
ticles of the same ground-state density ρ(r) is important in defining the exchange
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Input: A P(B⏐A) = {p(r’⏐r)} Output: B

p0(r) r p(r’⏐r) r’ ∫ p0(r) p(r’⏐r) dr = p*(r’)

Scheme 1 The molecular information (communication) system in local resolution

correlation. This Hartree reference is devoid of any electron correlation with

ρHartree
2 (r, r′) = ρ(r)ρ(r′), ρHartree(r′|r) = ρ(r′), hHartree

xc (r′|r) = 0,

∫ ρHartree
2 (r, r′) dr dr′ = N2,

pHartree
2 (r, r′) = p(r)p(r′), pHartree(r′|r) = p(r′), f Hartree

xc (r′|r) = 0,

∫ pHartree
2 (r, r′) dr dr′ = 1. (11)

This allows one to formally define the exchange holes as differences between condi-
tional distributions in the KS and Hartree limits:

hx(r′|r) = ρλ=0(r′|r) − ρHartree(r′|r), fx(r′|r) = pλ=0(r′|r) − pHartree(r′|r). (12)

3 Information propagation in the local resolution of electron probabilities

The three levels of treating the electron correlation in molecules, which mark the
Hartree, KS, and real systems of the preceding section, provide natural stages in ex-
amining the information propagation in local-resolution of the two-electron distribu-
tions (see Scheme 1). By convention the electron-localization “events” in the channel
input (A) are identified by r, while those in the channel output (B) are denoted by
r′. The conditional probability density P(B|A) ≡ {p(r′|r)}, for all input and out-
put locations then determines the system (continuous) propagation “matrix”, which
determines the “communication” connections between electron positions in the input
and output of the molecular information system. The initial probability distribution
p0(r) shapes the channel input signal, while the promoted distribution combining the
scattered contributions from all inputs,

p∗(r′) = ∫p0(r)p(r′|r) dr, (13)

represents the system output signal. In the stationary, ground-state communication
system the promoted probabilities represent the molecular probabilities: p∗(r) = p(r).

Let us first examine the information channels of the separate reference systems
(Scheme 2), and their complementary entropy/information descriptors: the molec-
ular conditional-entropy index, for the molecular input distribution p0(r) = p(r),
which measures the average “noise” in the molecular stationary channel giving rise to
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p∗(r′) = p(r′),

S(B|A) ≡ S(p∗|p) = −∫ ∫ p2(r, r′) log p(r′|r)drdr′ = S(A, B) − S(A)

≡ S(A|B) ≡ S(p|p∗)
≡ −∫ ∫p2(r′, r) log p(r|r′)drdr′ = S(A, B) − S(B) ≡ S(B|A)

= S[p2] − S[p], (14)

and the mutual information reflecting the amount of information flowing through the
channel:

I (A0 : B) ≡ I (p0 : p) = ∫∫ p2(r′, r) log[p(r|r′)/p0(r)] drdr′

= S(A0) − S(A|B) = S[p0] + S[p] − S[p2]. (15)

Here, the one- and two-electron Shannon entropies read:

S(A0) ≡ S[p0] = −∫ p0(r) log p0(r)dr, S(A) = S(B) = S[p],
S(A, B) ≡ S[p2] = −∫ ∫p2(r′, r) log p2(r′, r) drdr′. (16)

It should be emphasized, that one applies the molecular input distribution p(r) to
generate the IT-covalency index, as a purely molecular phenomenon, and one uses
the promolecular input signal p0(r), to estimate the system IT-ionicity, as a difference
(displacement) phenomenon in the bond-formation process [5,18–26].

The promolecular entropy S[p0] marks the initial amount of information contained
in the input probability density p0(r) of the free constituent atoms. Due to the prob-
ability scattering this information is partly dissipated as the communication noise,
which reflects the system IT-covalent bond component S(A|B), and partly preserved
as the IT-ionic component I (A0 : B), thus conserving the overall information index
with reference to A0:

N(A0; B) ≡ N(p0;p) = S(A|B) + I (A0 : B) = S(A0). (17)

When the logarithm base 2 is applied the entropic quantities are measured in bits.
Consider first the Hartree communication system in local resolution, for the mole-

cule as a whole (Scheme 2a), in which the output events are independent of the input
events, due to the absence of any electron-correlation effects. The conditional and
output probability distributions are thus given by the molecular shape-factor p(r′),
thus giving rise to the following entropy/information descriptors of Eqs. 14–17:

SHartree(p|p) = S[p], IHartree(p0 : p) = S[p0] − S[p],
NHartree(p0;p) = S[p0]. (18)

Therefore, the IT-covalency index measuring the average-noise of the Hartree system,
of independent spin-less particles distributed in accordance with the molecular electron
probability p(r′), is given by the Shannon entropy of this distribution. The IT-ionicity
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(a):
p0(r) r p(r’) r’                  [∫ p0(r) dr] p(r’) = p(r’) ≡ )'(*

Hartree rp

(b):
p0(r) r p(r’) + fx(r’⏐r) r’ ∫ p0(r)[p(r’) + fx(r’⏐r)]dr

         = p(r’) + ∫ p0(r) fx(r’⏐r) dr ≡ )'(*
KS rp

(c):
p0(r) r p(r’) + fxc(r’⏐r) r’ ∫ p0(r)[p(r’) + fxc(r’⏐r)]dr

         = p(r’) + ∫ p0(r) fxc(r’⏐r) dr ≡ )'(*
M rp

Scheme 2 The locally-resolved information channels of the reference systems: Hartree (Panel a), Kohn–
Sham (Panel b), and molecular (Panel c)

of this system, with respect to the reference electron probabilities p0(r) of the system
atomic “promolecule”, is seen to reflect the difference in the information content of
the two compared probability distributions, while the overall index reflects the original
information content measured by the Shannon entropy of the initial probability density.

As indicated in Scheme 2b, the Fermi hole introduces a mutual dependence between
the elementary output and input events in the Kohn–Sham information channel in local
resolution. It should be observed, that for the given molecular input, when p0(r) =
p(r), the deviation of the promoted probability density p∗

KS(r′) from the molecular
shape factor p(r′) vanishes exactly for each output location, p(r′)+∫ p(r)fx(r′|r)dr =
p(r′), since such an input signal generates the same, stationary molecular distribution
in the output of the ground-state channel. Therefore, at each point r′ the deviation
δp∗

x(r
′) ≡ p∗

KS(r′) − p(r′) must identically vanish for any output location r′ of an
electron:

δp∗
x(r

′) = ∫p(r)fx(r′|r)dr = 0. (19a)

This equation constitutes an additional integral constraint, the stationary sum-rule, for
the Fermi probability-hole.

A similar conclusion follows from Scheme 2c corresponding to the real (interact-
ing) molecular system M , in which the resultant probability-hole fxc(r′|r) determines
modifications of the promoted (output) probability density relative to the molecular
shape factor determining the input distribution. Again, for the molecular input signal
p0(r) = p(r), which marks the stationary channel,

δp∗
xc(r

′) = ∫p(r)fxc(r′|r)dr = 0. (19b)

The hole resolution of Eq. 10 then implies the associated stationary sum-rule for
the Coulomb probability-hole:

δp∗
c (r

′) = ∫ p(r)fc(r′|r)dr = 0. (19c)

These sum-rules for the stationary probability distribution, of the vanishing input-
integrated first-moments of the probability-holes in the system ground-state, constitute
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additional constraints on their shape, with respect to the reference-electron position.
They complement the familiar sum-rules of Eq. 4, involving integration over the
dependent-electron position.

Consider as an illustration the exact exchange in the Hartree–Fock theory, in which
the density-hole expressed in terms of the singly-occupied spin-MO ϕσ = {ϕjσ }
reads:

hx(r′|r) = −1

ρ(r)

∑
σ=↑,↓

Nσ∑
j,k

�σ
j,k(r)�

σ
k,j (r

′), �σ
j,k(r) = ϕ∗

jσ (r)ϕkσ (r). (20)

It can be straightforwardly verified that it satisfies the correct output-normalization of
Eq. 4:

∫ hx(r′|r)dr′ = −1

ρ(r)

∑
σ=↑,↓

Nσ∑
j,k

�σ
j,k(r)

∫
�σ

k,j (r
′)dr′

= −1

ρ(r)

∑
σ=↑,↓

Nσ∑
j

�σ
j,j (r) = −1, (21)

and generates the familiar expression for the exchange energy in terms of the exchange
integrals:

Ex[ρ] = 1/2 ∫ ∫ ρ(r)hx(r′|r)|r′ − r|−1dr dr′

= −1

2

∑
σ=↑,↓

Nσ∑
j,k

∫ ∫
�σ

j,k(r)�
σ
k,j (r

′)drdr′ = −1

2

∑
σ=↑,↓

Nσ∑
j,k

Kσ
j,k. (22)

The associated probability-hole, from Eq. 5, reads:

fx(r′|r) = [hx(r′|r) + p(r′)]/(N − 1), ∫ fx(r′|r)dr′ = 0. (23)

When substituted into Eq. 19a it gives:

(N−1) ∫ p(r)fx(r′|r)dr = (N − 1)

⎧⎨
⎩− 1

N

∑
σ=↑,↓

Nσ∑
j,k

∫
�σ

j,k(r)dr�σ
k,j (r

′)+p(r′)

⎫⎬
⎭

= (N − 1)

{−ρ(r′)
N

+ p(r′)
}

= 0, (24)

thus indeed satisfying the stationary sum-rule for the KS system, which involves the
integration over the input-event locations of an electron in the molecular information
system.

Next, let us examine the entropy/information descriptors of the correlated infor-
mation systems of Scheme 2b and c. In the stationary KS system the conditional
probabilities
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pKS(r′|r) = p(r′) + fx(r′|r) ≡ gx(r, r′)p(r′), ∫pKS(r′|r) dr′ = 1,

gx(r, r′) = 1 + fx(r′|r)/p(r′) ≡ 1 + yx(r, r′), |yx(r, r′)| << 1, (25)

define the joint input–output probabilities

pKS
2 (r, r′) = p(r)pKS(r′|r), ∫ pKS

2 (r, r′)dr′ = p(r). (26)

They give rise to the (stationary) conditional-entropy index (see Eq. 25):

SKS(p∗
KS|p) = SKS(p|p) = −∫ ∫pKS

2 (r, r′) log pKS(r′|r) dr dr′

= −∫ ∫pKS
2 (r, r′) log[gx(r, r′)p(r′)]

= S[p] − ∫ ∫ p(r)yx(r, r′)p(r′) dr dr′

−1

2
∫ ∫p(r)y2

x (r, r′)p(r′) dr dr′ + O(y3
x)

∼= S[p] − 1

2
∫ ∫ p(r)y2

x (r, r′)p(r′) dr dr′. (27a)

In this short derivation we have used the quadratic Taylor expansion of log(1 + yx) =
yx(1 − 1/2yx) and observed that the linear term in yx vanishes by the stationary sum-
rule (19a). Therefore, to the quadratic term in yx (Eq. 25) SKS(p∗

KS|p) ≈ S[p] =
SHartree(p|p) (see Eq. 18).

Consider now the mutual-information quantity of the communication system 2b.
Using Eq. 15 gives

IKS(p0 : p) = ∫∫p0(r)pKS(r′|r) log[pKS(r|r′)/p0(r)] dr dr′ = S[p0] − SKS(p|p)

∼= S[p0] − S[p] + 1

2
∫ ∫ p(r)y2

x (r, r′)p(r′) dr dr′ ≈ S[p0] − S[p]
= IHartree(p0 : p). (27b)

Again, to the quadratic term in yx , the mutual information index of the local KS
information system equals that in the Hartree limit (Eq. 18). One also observes that
the entropy/information indices of Eq. 27a and b conserve the overall IT index of the
KS system at the promolecular information level:

NKS(p0;p) = SKS(p|p) + IKS(p0 : p) = S[p0] = NHartree(p0;p). (27c)

The corresponding entropic quantities for the local communication system of the
real (interacting) molecular system M (Scheme 2c) are obtained by replacing in Eqs.
27a–c the exchange conditional probabilities and Fermi holes with the full (resultant)
exchange-correlation quantities:

p(r′|r) = p(r′) + fxc(r′|r) ≡ gxc(r, r′)p(r′), ∫ p(r′|r) dr′ = 1,

gxc(r, r′) = 1 + fxc(r′|r)/p(r′) ≡ 1 + yxc(r, r′), |yxc(r, r′)| << 1.
(28)
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Therefore, to the second-order of the Taylor expansion of the entropy/information
quantities in powers of yxc:

SM(p|p) = ∫ ∫p(r)p(r′|r) log[p(r|r′)] dr dr′ ∼= S[p]
−1

2
∫ ∫p(r)y2

xc(r, r′)p(r′) dr dr′

≈ S[p] = SHartree(p|p),

IM(p0 : p) = S[p0] − S(p|p) ∼= S[p0] − S[p] + 1

2
∫ ∫ p(r)y2

xc(r, r′)p(r′)drdr′

≈ S[p0] − S[p] = IHartree(p0 : p), (29)

NM(p0;p) = S(p|p) + I (p0 : p) = S[p0] = NHartree(p0;p).

To summarize, for the given molecular probability density p(r) the overall IT bond
indices of the Hartree, Kohn–Sham and the real molecular systems with respect to
the free-atom reference distribution p0(r) conserve the initial information content
measured by the Shannon entropy of the promolecular probability density. In the
correlated systems the leading terms describing a deviation from the Hartree values
of the entropy/information descriptors are quadratic in the relative hole yα(r, r′) =
fα(r′|r)/p(r′), α =x, xc. They represent an extra noise in the correlated communica-
tion system, which effectively diminishes the amount of its information flow.

4 Probability densities in the stockholder partition of molecular electron
densities into AIM distributions

As another illustrative example let us consider the Hirshfeld (H ) [7] partition of the
electron density

ρ(r) = N

∫
· · ·

∫ ∣∣�∗(r, σ1, 2, 3, . . . , N)
∣∣2

dσ1dq2 . . . dqN ≡ Np(r),

∫ ρ(r)dr = N, ∫ p(r) dr = 1, (30)

of a molecular system M into densities ρH (r) = {ρH
Z (r)} of its constituent bonded-

atoms {ZH = AH , BH ,. . .}: ρ(r) = ∑
Z ρH

Z (r). This exhaustive division is defined
by the following “stockholder” principle:

ρH
X (r) = ρ0

X(r)[ρ(r)/ρ0(r)] ≡ ρ0
X(r)w(r)

= ρ(r)[ρ0
X(r)/ρ0(r)] ≡ ρ(r)dH

X (r),
∑

X
dH
X (r) = 1. (31)

The row vector ρ0(r) = {ρ0
Z(r)} groups the densities of the free-atoms, giving rise to

the reference electron density ρ0(r) = ∑
Z ρ0

Z(r) of the (iso-electronic) promolecule
M0 consisting of the non-bonded atoms {Z0 = A0, B0, . . .} shifted to their actual
positions in M:
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N0 = ∫ ρ0(r) dr =
∑

Z
∫ ρ0

Z(r) dr =
∑

Z
N0

Z = N

=
∑

Z
∫ ρH

Z (r) dr =
∑

Z
NH

Z . (32)

The effective electron populations NH = {NH
Z } and N0 = {N0

Z} group the numbers
of electrons of the bonded and free atoms, respectively.

A reference to Eq. 31 shows that these AIM densities satisfy the local principle
of the “stockholder” rule, which can be stated as the following equality between the
local molecular and promolecular conditional probabilities of bonded and free atoms,
respectively, which by analogy with the stockmarket reflect the atomic shares in the
molecular “profit” ρ(r) or promolecular “investment” ρ0(r):

dH
Z (r) = ρH

Z (r)/ρ(r) ≡ dH (Z|r) = d0
Z(r) = ρ0

Z(r)/ρ0(r) ≡ d0(Z|r),∑
Z

dH (Z|r) =
∑

Z
d0(Z|r) = 1. (33)

Alternatively, these stockholder atomic densities can be viewed as the locally modified
densities of free atoms, which are obtained using the universal (unbiased) enhancement
factor w(r) = ρ(r)/ρ0(r).

One could extract the overall number of electrons N from both the molecular
and subsystem densities, in order to establish the associated AIM partition p(r) =∑

Z πH
Z (r) of the molecular shape-factor p(r) (Eq. 30) into the corresponding pieces

attributed to the stockholder atoms,

πH (r) = {πH
Z (r) = ρH

Z (r)/N ≡ πH (Z, r)},
ρ(r) = Np(r) = N

∑
Z
[ρH

Z (r)/N ] ≡ N [
∑

Z
πH

Z (r)], (34)∑
Z

∫πH
Z (r)dr =

∑
Z
(NH

Z /N) ≡
∑

Z
P H

Z = 1,

where p(r) and πH (r) stand for the molecularly-normalized shape-factors of the sys-
tem as a whole and of its Hirshfeld AIM, respectively, while the vector PH = {P H

Z }
groups the condensed probabilities of finding an electron of M on the specified AIM.

The normalization of Eq. 34 reflects the important fact that bonded atoms are
constituent parts of the molecule, so that the full normalization condition has to involve
the summation/integration over the complete set of one-electron events, consisting of
all possible “values” of the discrete argumentZ (atomic label) and all spatial locations
of an electron, identified by continuous coordinates r in the subsystem probability
distributions πH (r) = {πH (Z, r)}.

The same type of normalization has to be adopted for the free-atom pieces of the
promolecular probability distribution and those of its free-atom components, respec-
tively:

p0(r) = ρ0(r)/N0 =
∑

Z
π0

Z(r),

π0(r) = ρ0(r)/N = {π0
Z(r) = ρ0

Z(r)/N0 ≡ π0(Z, r)}, (35)∑
Z

∫π0
Z(r)dr =

∑
Z
(N0

Z/N) ≡
∑

Z
P 0

Z = 1;
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here P0 = {P 0
Z} collects the condensed probabilities of observing an electron of M0

on the specified free atom. The full normalization of the shape (probability) factors
π0(r) = {π0(Z, r)} of the non-bonded atoms in the promolecular reference-system
again involves the summation over the discrete atomic “variable” Z and the integration
over all positions r of an electron, the latter representing the continuous arguments
identifying the localization “event” of the electron distribution measurement of an
atomic fragments in M0.

In fact, the unity(atom)-normalized densities of the separate fragments,

pH (r) = {pH
Z (r) ≡ πH (Z, r)/P H

Z ≡ pH (r|Z)},
p0(r) = {p0

Z(r) ≡ π0(Z, r)/P 0
Z ≡ p0(r|Z)}, (36)

∫ pH (r|Z)dr = ∫ p0(r|Z)dr = 1,

represent the complementary set of conditional probabilities of finding an electron
at r in the separate ZH or Z0, in which the atomic label is not a variable but the
parameter. Indeed, the normalization of such conditional distributions involves the
integration over the position variable only. It should be stressed, that the probabilities
πH (r) [or π0(r)] describe the atomic fragments of a larger molecular/promolecular
system, while pH (r) [or p0(r)] represent a single (separated) atomic system.

The share factors dH (r) = {dH (Z|r)} = d0(r) (see Eq. 33) represent yet another set
of the conditional probabilities for the atomic stockholder subsystems in the molecule,
with the reversed roles of parameters and variables, compared to pH (r) = {pH (r|Z)}.
Indeed, in dH (Z|r) or d0(Z|r) the atomic label Z represents the discrete “variable”,
while the electron position r denotes the continuous “parameter”.

As we have already remarked above, in the stockholder division each free subsystem
density (or its shape factor) is locally modified in accordance with the molecular (atom-
independent) density-enhancement factor w(r):

wH
Z (r) ≡ ρH

Z (r)/ρ0
Z(r) = ρ(r)/ρ0(r) = πH

Z (r)/π0
Z(r) = p(r)/p0(r) ≡ w(r). (37)

Therefore, this division is devoid of any atomic bias and as such appears to be fully
objective. Indeed, this partition result from the minimum principle of the entropy-
deficiency (missing-information) [3] in the AIM distributions relative to their free-
atom analogs, subject to the constraint of the exhaustive division [5,6,8–11]. It also
naturally follows from the related local information principle formulated in terms of
the information-distance density [5,6]. These information principles have recently
been extended to cover the stockholder division of many-electron densities [5,12].

The bonded atoms of the molecule can be involved in both the intra- and inter-
atomic probability scattering, between local volume elements attributed to the same
or different AIM, respectively. An example of the intra-atomic information channel
is provided by the parallel arrangement of the elementary sub-channels describing
the separate AIM, while the so called vertical Hirshfeld channel [5,14,19,22] admits
only the local inter-atomic probability scattering, in the spirit of the stockholder divi-
sion principle. Finally, the Hartree-channel of independent atoms combines both types
of the information dissipation. In the following sections we shall examine how these
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(a) (b)
AX→ PX(BX⏐AX) →BX λAX → PX (BX⏐AX) → λ BX

AY → PY(BY⏐AY) → BY      (1−λ)AY → PY (BY⏐AY) → (1−λ) BY

           A(λ) →  PM (B⏐A) → B(λ)

Fig. 1 The local communication systems of the separate stockholder AIM (Panel a), defined by the
intra-atom conditional probabilities PZ(BZ |AZ) ≡ PZ(r′|r), Z = X, Y , and their parallel arrange-
ment (Panel b) into the combined information system of a diatomic molecule M =X–Y , characterized
by the molecular conditional probabilities PM(B|A) = PM(r′|r) = {P(r′; Z′|r; Z) = PZ(r′|r)δZ,Z′ }.
The inputs(outputs) of each separate AIM and the molecule cover the whole physical space: AX =
AY = A = {r} and BX = BY = B = {r′}. It should be observed that the normalized in-
put probabilities {P(AZ) = pZ(r)} of the separate sub-channels represent the conditional (intra-
group) probabilities in the combined system: {pZ(r) = ρZ(r)/NZ ≡ p(r|Z)}, NZ = ∫ ρZ(r) dr,
which exhibit the relevant normalizations: ∫ pZ(r) dr = ∫p(r|Z)dr = 1, Z = X, Y . The cor-
responding output probabilities of the separate atoms {P(BZ) = qZ(r′)} are also conditional in
character: {qZ′ (r′) ≡ q(r′|Z′)}, ∫ qZ′ (r′) dr′ = ∫ q(r′|Z′) dr′ = 1, Z′ = X, Y . They are
related to the AIM input probabilities by the integral transformation: qZ(r′) =∫ pZ(r) PZ(r′|r) dr.
In the molecular (combined) communication system the molecular values of these probabilities are
obtained by multiplying the separate-atom (conditional) probability distribution by the atom condensed
probability, πH (Z, r) =PH

Z
pZ(r), where PH = {PH

Z
= NH

Z
/N} ≡ (λ = NH

X
/N, 1 − λ = NH

Y
/N),

or by multiplying the molecular probability p(r) = ρ(r)/N by the atom share-factor in the system
as a whole: dH

Z
(r) ≡ d(Z|r) = ρH

Z
(r)/ρ(r) = pH

Z
(r)/p(r). Thus, in the stockholder partitioning

P(A(λ)) = P(r′; M) = {πH (Z, r)} and P(B(λ)) = Q(r′; M) = {πH (Z′, r′)}. These probabilities are
related by the molecular conditional probabilities PM (r′|r): PM(B(λ)) = [λP(BX), (1 − λ)P(BY )] ≡

PM(A(λ))PM(B|A) = [λP(AX), (1 − λ)P(AY )]
⎡
⎣ PX(BX

∣∣∣AX ) 0

0 PY (BY
∣∣∣AY )

⎤
⎦ = Q(r′; M) =

∫ P(r;M)PM(r′|r)dr = [∫πH
X

(r)PX(r′|r)dr, ∫ πH
Y

(r)PY (r′|r)dr]

different types of the electron probability scattering affect the system entropy/
information descriptors. To simplify this qualitative discussion the diatomic molecule
M = X − Y and the related atomic promolecule M0 = (X0|Y 0) have been exam-
ined. We shall also address the grouping problem of combining the separate-atom in-
dices into those characterizing the whole information system of the parallely-arranged
atomic sub-channels (see also [30]).

5 Parallely-arranged information systems of separate AIM in diatomics

Let us examine the molecular communication system resulting from the parallel
arrangement of Fig. 1, of the two sub-channels of the separate atoms in the diatomic
molecule M . The separate (disconnected) sub-channels of atoms X and Y are generated
by their internal conditional probabilities PX(BX|AX) = PX(r′|r) and PY (BY |AY ) =
PY (r′|r), respectively. In the molecular system they are combined in a parallel manner
into a single channel of Panel b, defined by the molecular conditional probabilities
PM(B|A) = PM(r′|r) = {P(r′;Z′|r;Z) = PZ(r′|r)δZ,Z′ }, which admit only the
intra-atomic probability scattering.
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In the “stockholder” partitioning of ρ(r) = ∑
Z ρH

Z (r) = N
∑

Z pH
Z (r) of the

molecular electron density ρ(r) = Np(r) into the AIM pieces {ρH
Z (r) = ρ(r)[ρ0

Z(r)/
ρ0(r)] ≡ ρ(r)dH

Z (r) = NπH
Z (r)}, the local probability weight of atom Z in M as a

whole is determined by the atomic share-factor dH
Z (r) = ρH

Z (r)/ρ(r) = πH
Z (r)/p(r);

here the probability distribution of atom Z in M , πH
Z (r) =ρH

Z (r)/N , represents the joint
probability πH

Z (r) =πH (Z, r), which satisfies the molecular normalization

∑
Z

∫πH (Z, r)dr =
∑

Z
NH

Z /N =
∑

Z
P H

Z = 1. (38)

Above, the (condensed) probabilities of the two AIM in M , PH = {P H
Z = NH

Z /N} ≡
(λ = NH

X /N , 1 − λ = NH
Y /N). The promolecular share-factor d0

Z(r) = dH
Z (r) is

similarly given by the ratio of the free-atom density ρ0
Z(r) shifted to the atomic position

in a molecule, to the overall density ρ0(r) = ∑
Z ρ0

Z(r) = N0p0(r) of the atomic
promolecule M0 = (X0|Y 0), defined by the sum of non-bonded (mutually-closed)
atomic contributions: d0

Z(r) = ρ0
Z(r)/ρ0(r) = π0

Z(r)/p0(r). The atomic probability
in the promolecule, π0

Z(r) = ρ0
Z(r)/N0, again represents the joint probability π0

Z(r) =
π0(Z, r), which satisfies the promolecular normalization

∑
Z

∫π0(Z, r)dr =
∑

Z
N0

Z/N =
∑

Z
P 0

Z = 1. (39)

Therefore, the atomic share-factor represents both the molecular and the promolecu-
lar conditional probabilities, of attributing the local density at r to atom Z, dH

Z (r) ≡
dH (Z|r) ≡ d0(Z|r), satisfying the proper normalization:

∑
Z dH (Z|r) =∑

Z d0(Z|r)=1. It should be stressed, that in this internal scattering of electron prob-
abilities the continuous sets of the electron-localization events of each (open) stock-
holder atom and that of the system as a whole are identical, covering the whole physical
space: AX = AY = A = {r} and BX = BY = B = {r′}.

The local, unity-normalized molecular or promolecular probabilities of an electron
in each separate atom,

{P(AZ) = ρH
Z (r)/NH

Z = pH
Z (r)} or {P0(AZ) = ρ0

Z(r)/N0
Z = p0

Z(r)}, (40)

also represent the conditional (intra-group) probabilities in the combined system,

{pH
Z (r) = [ρH

Z (r)/N ]/(NH
Z /N) ≡ πH (Z, r)/P H

Z = pH (r|Z)},
{p0

Z(r) = [ρ0
Z(r)/N0]/(N0

Z/N0) ≡ π0(Z, r)/P 0
Z = p0(r|Z)}, (41)

as indeed reflected by their normalizations: ∫pH (r|Z)dr = ∫p0(r|Z)dr = 1. Above,
the (condensed) probabilities of AIM in M , PH = {P H

Z = NH
Z /N} ≡ (λ, 1 − λ), or

of free-atoms in M0, P0 = {P 0
Z = N0

Z/N0}, and the joint probabilities of an electron
attributed to atom Z to be located at r:

πH (Z, r) = P H
Z pH (r|Z) and π0(Z, r) = P 0

Zp0(r|Z). (42)
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These joint probabilities can also be expressed in terms of the alternative set of atomic
conditional probabilities represented by the atomic shares in the local molecular or
promolecular densities {dH (Z|r) ≡ d0(Z|r)}:

πH (Z, r) = p(r)dH (Z|r) and π0(Z, r) = p0(r)d0(Z|r). (43)

To summarize, in the parallely-combined molecular communication system the
joint-probability distribution πH (Z, r) is thus obtained by either multiplying the (con-
ditional) probability function pH (r|Z) of the separate atom by the condensed AIM
probability P H

Z , or by multiplying the molecular probability function p(r) by the
local share-factor dH

Z (r) ≡ dH (Z|r) of the Hirshfeld AIM in the system as a whole.
Therefore, in the stockholder partitioning the input probability vector of the combined
system reads:

P(A) ≡ P(r,M) = {πH (Z, r) = p(r)dH (Z|r) = P H
Z pH (r|Z)},∑

Z
dH (Z|r) = ∫ drpH (r|Z) = 1. (44)

This is also symbolically depicted in Fig. 1b.
Therefore, the normalized input and output probabilities of the parallel molecular

channel read:

P(A(λ)) = [λP(AX), (1 − λ)P(AY )] = [πH
X (r), πH

Y (r)],
P(B(λ)) = [λP(AX)PX(BX|AX), (1 − λ)P(AY )PY (BY |AY )] (45)

= [λP(BX), (1 − λ)P(BY )].
Hence, the conditional probabilities PM(B|A) transforming the input probabilities into
the output probabilities in the combined, molecular channel,

P(A(λ))PM(B|A) = P(B(λ))

≡ [λP(AX), (1−λ)P(AY )]
⎡
⎣ PX(BX

∣∣∣AX ) 0

0 PY (BY
∣∣∣AY )

⎤
⎦ = Q(r′; M)

= ∫ P(r;M)PM(r′|r)dr = [∫ πH
X (r)PX(r′|r)dr, ∫ πH

Y (r)PY (r′|r)dr],
(46)

assume the block-diagonal form:

PM(B |A ) =
[

PX(BX
∣∣AX ) 0

0 PY (BY
∣∣AY )

]
≡

[
PX(r′ |r ) 0

0 PY (r′ |r )

]
. (47)

6 Combination rules for entropic descriptors of the parallel stockholder AIM

Let us now examine the grouping of the entropy/information descriptors of separate
atoms into those for the molecular communication system as a whole. We shall illus-
trate these combination rules for the diatomic case of the preceding section.
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It follows from Eq. 43 that the AIM probability distributionsπH (r) = {πH (Z, r) ≡
πH

Z (r)} and π0(r) = {π0(Z, r) ≡ π0
Z(r)} add up to the molecular and promolecular

shape-factors:

∑
Z

πH (Z, r) = p(r)
∑

Z
dH (Z|r) = p(r),∑

Z
π0(Z, r) = p0(r)

∑
Z

d0(Z|r) = p0(r), (48)

where we have used the normalization of share factors as conditional probabilities
[see Eq. (44)]. Therefore the Shannon entropy contained in the molecular probability
density can be expressed in terms of the AIM distributions πH (r) and their local shares
dH (r) = {dH (Z|r) ≡ dH

Z (r)}:

S[p] = −∫ p(r) log p(r) dr ≡ Stotal[πH ]
= −

∑
Z

∫πH (Z, r) log[πH (Z, r)/dH (Z|r)] dr

= −
∑

Z
∫πH (Z, r) log πH (Z, r)dr−∫ p(r)[−

∑
Z

dH (Z|r) log dH (Z|r)]dr

=
∑

Z
S[πH

Z ] − ∫p(r)s[dH (r)] dr ≡ Sadd [πH ] + Snadd [πH ]. (49)

The first, additive term in the stockholder AIM resolution, Sadd [πH ] = ∑
Z S[πH

Z ],
carries the sum of entropies of atomic distributions in the molecule, while the second,
non-additive term, Snadd [πH ] = Stotal[πH ] − Sadd [πH ] = −∫ p(r)s[dH (r)]dr,
represents the negative (molecularly-weighted) mean-value of the conditional-entropy
density generated by the AIM share-factors.

The additive term in Eq. 49 can be further expressed using Eq. 42 in terms of
the condensed AIM probabilities PH = (λ, 1 − λ) and the probability distributions
pH (r) = {pH

Z (r)} of the separate AIM. Let us first examine the entropies of electron
probabilities in the separate non-bonded or bonded atoms, the building units of the
promolecular and molecular systems, respectively. The Shannon average entropies of
the separate free-atoms {Z0} characterized by the probability distributions of Eq. 41
are given by the integrals

S[p0
Z] = −∫ p0(r|Z) log p0(r|Z)dr, Z = X0, Y 0, (50)

while the entropies of the separate AIM read:

S[pH
Z ] = −∫ pH (r|Z) log pH (r|Z)dr, Z = XH , YH . (51)

The additive entropy Sadd [πH ] of the molecular input probabilities of AIM,
P(A(λ)) = [λP(AX), (1 − λ)P(AY )] can now be expressed using the following
grouping rule:
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Sadd [πH ] = S(A(λ)) = −
∑

Z=X,Y

∫
πH (Z, r) log πH (Z, r)dr

= −
∑

Z=X,Y

∫
P H

Z pH (r |Z) log[P H
Z pH (r |Z)]dr

= −
∑

Z=X,Y

P H
Z log P H

Z −
∑

Z=X,Y

P H
Z

∫
pH (r |Z ) logpH (r |Z)dr

≡ H(λ) + {λS[pH
X ] + (1 − λ)S[pH

Y ]},
H(λ) = −λ log λ − (1 − λ) log(1 − λ). (52)

The condensed AIM entropy term S(PH ), which gives rise to the binary entropy H(λ),
represents the group-uncertainty, while the rest measures the mean value of the intra-
atomic (conditional) uncertainties for each stockholder subsystem, weighted using the
AIM condensed probabilities PH . These contributions describe the “experiment” of
removing the molecular uncertainty, or equivalently of acquiring the information about
the diatomic system. The first term identifies the atom the electron-location outcome
is in, which removes the S(PH ) part of the overall uncertainty. The second term is
similarly associated with the uncertainties {S[pH

Z ]} of local outcomes within each
atom, which have to weighted in accordance to with their corresponding condensed
probabilities PH in the molecule.

The non-additive entropy in Eq. 49,

Snadd [πH ] =
∑

Z

∫
p(r)dH (Z|r) log dH (Z|r) dr

=
∑

Z

∫
πH (Z, r) log dH (Z|r) dr, (53)

can be alternatively expressed as the PH -weighed average of the AIM entropy-
deficiencies (missing informations) of Kullback and Leibler [3]. We first express in
the preceding expression the molecular distributions πH (r) of AIM in terms of the
separate AIM distributions pH (r) (Eq. 42):

Snadd [πH ] =
∑

Z
P H

Z ∫pH (Z, r) log dH (Z|r) dr. (54)

Using Eq. 49 one then expresses the share-factordH (Z|r) in terms ofP H
Z andpH (Z, r):

Snadd [πH ] =
∑

Z
P H

Z

∫
pH (Z, r) log[P H

Z pH (Z, r)/p(r)]dr

=
∑

Z
P H

Z log P H
Z +

∑
Z

P H
Z

∫
pH (Z, r) log[pH (Z, r)/p(r)]dr

≡ H(λ) +
∑

Z
P H

Z 
S[pH
Z |p], (55)
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where 
S[pH
Z |p] measures the cross-entropy (entropy deficiency, missing informa-

tion) [3] in the separated AIM distribution pH (Z, r) in reference to the molecular
distribution p(r). This final expression shows, that the non-additive entropy in AIM
resolution is given by the sum of entropies generated by the atomic condensed proba-
bilities and the PH -weighed average value of the entropy deficiencies of bonded atoms
relative to the molecular probability distribution.

One could also derive a similar AIM-resolved expression for the molecular entropy
deficiency relative to the promolecular probability density:


S[p|p0] = ∫p(r) log[p(r)/p0(r)]dr ≡ 
Stotal[πH |π0]
=

∑
Z=X,Y

∫
πH (Z, r) log

πH (Z, r)
π0(Z, r)

dr

=
∑

Z

S[πH

Z |π0
Z] ≡ 
Sadd [πH |π0]. (56)

It follows from the above equality 
Stotal[πH |π0] = 
Sadd [πH |π0] that the non-
additive entropy deficiency of the stockholder AIM exactly vanishes [5,8,14]:


Snadd [πH |π0] = 
Stotal[πH |π0] − 
Sadd [πH |π0] = 0. (57)

Finally, let us summarize the combination formulas for the conditional entropy (IT-
covalency) and mutual-information (IT-ionicity) descriptors of the molecular commu-
nication system of Fig. 1b, in terms of the entropy/information bond-indices for the
communication systems of the separate AIM fragments of Fig. 1a [5,30]:

S(BZ|AZ) = −∫ ∫ pH (r|Z)PZ(r′|r) log PZ(r′|r) dr dr′,
I (A0,Z : BZ) = ∫∫ p0(r|Z)PZ(r′|r) log[PZ(r′|r)/p0(r|Z)] dr dr′ (58)

= S[p0
Z] − S(BZ|AZ),

N(A0,Z; BZ) = S(BZ|AZ) + I (A0,Z : BZ) = S[p0
Z], Z = X, Y.

The molecular conditional-entropy, mutual-information and overall bond indices
of the molecular information channel of Fig. 1b, consisting of the molecular output
probabilities P(B(λ)) = [λP(BX), (1 − λ)P(BY )] and the molecular, P(A(λ)) =
[λP(AX), (1−λ)P(AY )], or promolecular, P(A0(λ)) = [λP(A0,X), (1−λ)P(A0,Y )],
input probabilities, are given by the following combinations of the corresponding
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A0(r) = {Z0(r)} P[Z’(r)⏐Z(r)] BH(r) = {Z’H(r)}

πX
0(r) X 0(r) dX

H(r) XH(r) πX
H(r)

dY
H(r) ∑Z πZ

0(r) = p0(r)
                            dX

H(r) ∑Z’ πZ’
H(r) = p(r)

πY
0(r) Y 0(r) dY

H(r) YH(r) πY
H(r)

Scheme 3 The vertical Hirshfeld channel for a diatomic molecule X–Y

separate-AIM quantities defined in the preceding equation:

S(B(λ)|A(λ)) =
∑

Z=X,Y

P H
Z S(BZ

∣∣∣AZ ),

I (A(λ) : B(λ)) = H(λ) +
∑

Z=X,Y

P H
Z I (A0,Z : BZ),

N(A0(λ); B(λ)) = S(B(λ)|A(λ)) + I (A0(λ) : B(λ))

= H(λ) +
∑

Z=X,Y

P H
Z [S(BZ

∣∣∣AZ )+I (A0,Z : BZ)]

= H(λ) +
∑

Z=X,Y

P H
Z N(A0,Z; BZ)

= H(λ) +
∑

Z=X,Y

P H
Z S[p0

Z]. (59)

7 Vertical Hirshfeld channel

The main purpose of this section is to summarize the fully-local treatment of the en-
tropy/information descriptors of the bonded stockholder AIM, relative to the free-atom,
promolecular reference, using the so called vertical Hirshfeld channel [5,14,19,22]
shown in Scheme 3. In this approach the molecular system is viewed as a collection of
infinitesimal volume elements, inside which the local probability scattering between
AIM, Z0(r) → Z′H (r), takes place. Due to the local character of this one-electron
information-propagation scheme, in the spirit of the stockholder division of the mole-
cular electron density, it requires only the integration over one-point coordinates in
calculating the average entropic descriptors of molecules and their atomic fragments.

These “vertical” flows of information in molecules conserve the fixed molecu-
lar electron density ρ(r) or its shape factor p(r). The local information channel of
Scheme 3 involves a given infinitesimal volume element at the specified position in
space of an electron, which determines both the input and output event of its spatial
localization. The promolecular-input probability densities are determined by the free-
atom distributions π0(r) of Eq. 36, while the molecular-output probability densities
πH (r) of Eq. 35 describe the stockholder AIM. The local matrix-kernel determining
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a0(r) = {Z0(r)} P[Z’(r)⏐Z(r)] bH(r) = {Z’H(r)}

dX
0(r) X 0(r) dX

H(r) XH(r) dX
H(r)

dY
H(r) ∑Z dZ

0(r) = 1 
                            dX

H(r) ∑Z dZ
H(r) = 1

dY
0(r) Y 0(r) dY

H(r) YH(r)       dY
H(r)

Scheme 4 The locally-normalized stockholder-channel for a diatomic molecule X–Y

the probability-propagation in the vertical channel,

PH (r′|r) = ∂πH (r′)/∂π0(r) = {P [Z′(r′)|Z(r)]
= {∂πH

Z′ (r′)/∂πH
Z (r) = dH

Z′(r′)δ(r′ − r)}, (60)

in which each row is identical, is generated by the local share-factors of AIM. This
choice of the scattering kernel is in the spirit of the stockholder division defining the
atomic fragments and satisfies the required normalization of each row in PH (r′|r):

∑
Z′ ∫P [Z′(r′)|Z(r)]dr′ = 1. (61)

It should be observed, however, that the input probabilities in Scheme 3 are not
unity-normalized (see Eq. 33). One could alternatively examine the locally-normalized
channel shown in Scheme 4 [5,14,19,22], which generates the entropy/information
descriptors per unit probability density at r, obtained by dividing the input probabilities
in Scheme 3 by the promolecular shape factor p0(r). Therefore, the locally-normalized
stockholder channel involves the promolecular shares d0(r) in its input, equal to the
molecular shares in the Hirshfeld scheme, d0(r) = dH (r), which also determine both
the probability scattering and the output probabilities in the vertical channel.

In the local-scattering matrix of Eq. 60 the probability of scattering to the specified
output AIM is independent of the input free-atom. It is seen to be governed by the same
local conditional probability dH (Z′|r) = d0(Z′|r), which characterizes the atomic
division of both the molecular and promolecular shape-factors of the corresponding
electron densities. Therefore, the local communication channels of Schemes 3 and 4
extend the stockholder rule to the realm of the probability/information scattering in
molecules.

One should observe the basic difference between the information system of Fig. 1b
and that depicted in Schemes 3 and 4. In the former case the molecularly-weighted
information scattering takes place only between different localities inside each atom
(non-local, intra-atomic covalency), with all inter-atomic communication links iden-
tically vanishing (see Eq. 46). In the latter case, the vertical information scattering
inside each local subsystem from each input atom to all constituent AIM of the system
under consideration provides a basis for estimating the local, inter-atomic measure of
the system IT-covalency.
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The atomic shares dH (r) = d0(r), which define the locally-normalized Hirshfeld
channel of Scheme 4, generate the identical input and output entropy densities, iden-
tified by the lower-case symbols (Compare Eq. 49)

s(a0(r)) = s(bH (r)) = −
∑

Z
dH
Z (r) log dH

Z (r) ≡ s(dH (r)). (62)

The local conditional-entropy contribution also gives

s(bH (r)|a0(r)) = −
∑

Z

∑
Z′ d

0
Z(r)dH

Z′(r) log dH
Z′(r)

= −
∑

Z′ d
H
Z′(r) log dH

Z′(r) = s(dH (r)). (63)

Hence the corresponding mutual-information density identically vanishes in the ver-
tical channel:

i(a0(r) : bH (r)) = −s(bH (r)|a0(r)) −
∑

Z

∑
Z′ d

0
Z(r)dH

Z′(r) log d0
Z(r)

= s(d0(r)) − s(dH (r)) = 0. (64)

This zero information-flow density, measuring the information-ionicity density in
the Hirshfeld channel, reflects the independence of the channel output probabilities on
its input. These two local entropy/information descriptors per unit input probability
density thus generate the purely IT-covalent overall information density:

n(a0(r); bH (r)) = s(bH (r)|a0(r)) + i(a0(r) : bH (r)) = s(bH (r)|a0(r)). (65)

The local entropies of the vertical Hirshfeld channel can be subsequently shape-
averaged over the whole space, using either the molecular [p(r)] or promolecular
[p0(r)] probability distributions as local ensemble “weights”. For example, the corre-
sponding average conditional entropies read:

〈s(bH |a0)〉 = ∫p(r)s(bH (r)|a0(r))dr = ∫ p(r)s(dH (r))dr = S[πH ] − S[p],
〈s(bH |a0)〉0 = ∫p0(r)s(bH (r)|a0(r))dr = ∫p0(r)s(d0(r))dr = S[π0] − S[p0].

(66)

These two measures of the average communication noise in the local channel of
Scheme 3 can be regarded as alternative descriptors of the IT-covalency in the ver-
tical Hirshfeld channel. Therefore, by regarding S[p] = Stotal[πH ] (or S[p0] =
Stotal[π0]) as total entropy in atomic resolution and S[πH ] = Sadd [πH ] (or S[π0] =
Sadd [π0]) as the corresponding additive contribution, the negative average entropies
of Eq. 66 can be interpreted as measuring the corresponding non-additive entropies:

Snadd [πH ] = Stotal[πH ] − Sadd [πH ] ≡ −〈s(bH |a0)〉,
Snadd [π0] = Stotal[π0] − Sadd [π0] ≡ −〈s(bH |a0)〉0. (67)
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0(r) = {Z0(r)} RH[Z’(r)⏐Z(r)] H(r) = {Z’H(r)}

ρX
0(r) X 0(r) w(r) dX

H(r) XH(r) ρX
H(r)

w(r) dY
H(r) ∑Z ρZ

0(r) = ρ0(r)
                      w(r) dX

H(r) ∑Z ρZ
H(r) = ρ(r)

ρY
0(r) Y 0(r) w(r) dY

H(r) YH(r) ρY
H(r)

Scheme 5 The flow diagram for the electron density in the vertical Hirshfeld channel of Scheme 3

It is also of interest to explore the displacement in the entropy non-additivity due to
the electron delocalization accompanying the bond formation. It is measured by the
difference between the two non-additive entropies of the preceding equation:


Snadd = Snadd [πH ] − Snadd [π0] = (S[π0] − S[πH ]) + (S[p0] − S[p])
≡ 
S[π ] − 
S[p]. (68)

The integral conditional-entropy and mutual-information descriptors of the vertical
channel of Scheme 3 are:

S(BH |A0) = −
∑

Z

∑
Z′ ∫ π0

Z(r)dH
Z′(r) log dH

Z′(r)dr

= −
∑

Z′ ∫p0(r)dH
Z′(r) log dH

Z′(r)dr

= 〈s(bH |a0)〉0 = S[π0] − S[p0], (69)

I (A0 : BH ) = −S(BH |A0) + S[π0] = S[p0],
N(A0; BH ) = S(BH |A0) + I (A0 : BH ) = S[π0].

It again predicts the overall IT bond-order to the amount of the (additive) Shannon
entropyS[π0] =Sadd [π0] contained in the input probabilities of the free atoms building
the promolecule. Part of this entropy measure is seen to be carried by a non-vanishing
information-flow (IT-ionicity), measured by the promolecular Shannon entropy S[p0].
It also predicts the complementary amount S[π0] − S[p0] to be dissipated as the
communication noise (IT-covalency) in the vertical Hirshfeld channel.

Finally, it follows from Eqs. 31 and 35 that by multiplying the input and conditional
(scattering) probabilities in Scheme 3 by the local molecular enhancement factor w(r)
one obtains the associated flow diagram for the electron density in the vertical Hirshfeld
channel (Scheme 5). Indeed, it can be straightforwardly verified that the density-flow
“communication” connections defining this network,

RH (r′|r) = w(r)PH (r′|r), (70)

give rise to the Hirshfeld output densities:

∫ ρ0(r)RH (r′|r)dr = ρH (r). (71)
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A0(r) = {Z0(r)} PHartree[Z’H(r’)⏐Z0(r)] BH(r’) = {Z’H(r’)}

πX
0(r) X 0(r) πX

H(r’) XH(r’) πX
H(r’)

πY
H(r’) ∑Z πZ

0(r) = p0(r)
πX

H(r’) ∑Z’ πZ’
H(r’) = p(r’)

πY
0(r) Y 0(r) πY

H(r’) YH(r’) πY
H(r’)

Scheme 6 The diatomic (non-local) communication channel for the independent Hirshfeld atoms in the
Hartree-limit

8 Independent atoms in the Hartree limit

Consider next the Hartree-limit in atomic resolution, when the input {Z0(r)} and
output {Z′H (r′)} “events” of localizing the charge-free, spinless particles, in either
the free-atoms of the promolecular distribution or the bonded-atoms of the molecular
distribution, are statistically independent. This gives rise to the non-local channel
shown in Scheme 6. Indeed, the joint probabilities P [Z0(r), Z′H (r′)] =π0

Z(r) πH
Z′ (r′)

give rise to conditional probabilities of the output given input:

PHartree(r′|r) = {P [Z′H (r′)|Z0(r)] = P [Z0(r), Z′H (r′)]/π0
Z(r) = πH

Z′ (r′)}. (72)

One should observe that this channel admits for the electron probability (informa-
tion) scattering between different volume elements of the same and different atoms,
thus generating both the intra- and inter-atom contributions to the system communi-
cation noise, which diminishes the initial amount of information S[π0], which also
characterizes the vertical information system of Scheme 3.

Its integral entropy/information bond-descriptors read:

SHartree(BH |A0) = −
∑

Z

∑
Z′ ∫ ∫π0

Z(r)πH
Z′ (r′) log πH

Z′ (r′)drdr′

= −
∑

Z′ ∫πH
Z′ (r′) log πH

Z′ (r′)dr′ = S[πH ],
IHartree(A0 : BH ) =−SHartree(BH |A0)−

∑
Z

∫ π0
Z(r) log π0

Z(r)dr=S[π0]−S[πH ],
NHartree(A0; BH ) = SHartree(BH |A0) + IHartree(A0 : BH ) = S[π0]. (73)

A comparison between these IT indices and their analogs (Eq. 70) describing the
vertical channel of Scheme 3 reveals a different partition of the same overall index
NHartree(A0; BH ) = N(A0; BH ) = S[π0] into the ionic and covalent parts. In the non-
local channel of Scheme 6 there is a more substantial noise-dissipation (IT-covalency)
part of the original information content [see Eqs. (66) and (67)],

SHartree(BH |A0) = S[πH ] > S(BH |A0) = S[π0] − S[p0] = Snadd [π0], (74)
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thus giving rise to a lower amount of the information-flow (IT-ionicity) part of S[π0]:

IHartree(A0 : BH ) = S[π0] − S[πH ] = 
S[π ] < I (A0 : BH ) = S[p0]. (75)

9 Conclusion

The Information Theory offers a novel perspective on the origins of the chemi-
cal bond, its covalent/ionic composition, and the bond-multiplicity measures. This
communication-theory approach explores the effective delocalization of electrons via
the system chemical bonds, which manifests itself through the scattering of electron
probabilities in the appropriately defined molecular information channel. The bond-
covalency effects are then reflected by the average communication “noise” created
by this information scattering, as measured by the conditional-entropy quantity of IT,
which effectively diminishes the amount of information in the channel output prob-
abilities, compared to the initial information content of the “input” probabilities of
the system promolecule composed of the free-atom densities shifted to their AIM
positions. This diminished level of the information-flow in the molecular informa-
tion system is measured by the complementary, mutual-information descriptor, which
reflects the bond IT-ionicity. These two IT-components conserve the initial, promole-
cular level of the information content, which reflects the overall bond-index in the
communication theory approach. In this way one obtains a transparent description of
the competition between the covalent and ionic components of the system chemical
bonds for the valence electrons of the constituent free-atoms.

In the past the entropy/information descriptors of molecular communication sys-
tems have been explored in the condensed (reduced) atomic or orbital resolutions, in a
search for adequate bond-order probes which give predictions in a general accord with
the accepted chemical (intuitive) bonding patterns in molecules. The coarse-grained
AIM description treats the atomic building-blocks as whole units, while the orbital
approach adopts the AO-promotion perspective in extracting the entropy/information
indices in both the ground- and excited electron configurations. In the present work
we have extended this analysis to the fine-grained, local description of electron distri-
butions in the molecule, its promolecular prototype, and their atomic fragments.

First, we have qualitatively examined within the Kohn–Sham DFT perspective, how
different levels of the electron correlation in molecules affect the IT bond indices. This
comparison has been carried out for the fixed electron density in the non-correlated
Hartree system of spin-less, non-interacting particles, the hypothetical Kohn–Sham
system of non-interacting fermions, and the real system of interacting electrons. These
limiting molecular systems respectively correspond to the conditional probability of
two electrons being reflected by the vanishing correlation hole, the exchange (Fermi)
hole, and the full exchange-correlation hole, including the Coulomb contribution.
The stationary sum-rules of the probability scattering in the local resolution have
been established and illustrated using the Hartree–Fock theory. The leading terms in
the extra communication-noise, compared to that in the Hartree system, due to the
increasing level of the included electron correlation have also been identified.
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An extra “spread” of the electron probabilities in a larger set of the electron lo-
calization “events” of the system constituent atoms increases the overall uncertainty
in electron distribution, in the same way as does the AO resolution compared to the
condensed (reduced) description of the system atomic fragments. This effect has been
examined using the stockholder partition of the molecular probability distribution into
densities of bonded atoms. In order to separate the effects due to the different cate-
gories of the probability-scattering between AIM, we have examined three reference
channels involving the locally-resolved (unreduced) channels of constituent atoms.
First, the molecular channel generated by the parallel arrangement of the (internal)
non-local atomic sub-channels has been discussed and the relevant grouping princi-
ples for its entropy-information descriptors have been derived. Its resultant IT indices
have been shown to reflect the molecularly-weighted mean values of the internal bond-
indices, which separately reflect the promoted (valence) states of AIM. The second
illustrative information system, the so called vertical Hirshfeld channel, admits only
the local inter-atom probability scattering. The ensemble of such local information
networks, with the molecular or promolecular electron shape-factors providing the
relevant probability-weights for the current electron location in space, were shown to
reflect the non-additivities in the entropy-covalency descriptor. Finally, the non-local
molecular channel in the Hartree limit of independent stockholder atoms, has been
examined and its additional contributions due to the switching-on the inter-atomic
information propagation have been discussed. We have qualitative demonstrated that,
as intuitively expected, this extra scattering effect generates higher entropy-covalency
and hence lower information-ionicity, compared to IT quantities characterizing the
vertical Hirshfeld channel.

The present qualitative study opens a way to future numerical calculations of the
probability/information concepts designed in this analysis. It should be observed,
however, that within the KS DFT one then has to extract the anisotropic correlation
holes explicitly. It remains to be seen how their known deficiencies in the KS DFT,
compared to much more realistic spherically-averaged correlation holes, which fully
determine the system electronic energy, affect the predicted IT bond descriptors.
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E. Świtka, Phys. Chem. Chem. Phys. 4, 4952 (2002)
14. R.F. NalewajskI, E. Broniatowska, J. Phys. Chem. A 107, 6270 (2003); Int. J. Quantum Chem. 101,

349–362 (2005)
15. R.F. Nalewajski, A.M. Köster, S. Escalante, J. Phys. Chem. A 109, 10038 (2005)
16. R.F. Nalewajski, E. Broniatowska, Chem. Phys. Lett. 376, 33 (2003)
17. R.F. Nalewajski, J. Phys. Chem. A 107, 3792 (2003); Ann. Phys. (Leipzig) 13, 201 (2004); Mol. Phys.

104, 255 (2006)
18. R.F. Nalewajski, J. Phys. Chem. A 104, 11940 (2000)
19. R.F. Nalewajski, Mol. Phys. 102, 531, 547 (2004)
20. R.F. Nalewajski, Mol. Phys. 103, 451 (2005)
21. R.F. Nalewajski, Mol. Phys. 104, 365, 493, 1977, 2533 (2006)
22. R.F. Nalewajski, Struct. Chem. 15, 391 (2004)
23. R.F. Nalewajski, J. Math. Chem. 38, 43 (2005)
24. R.F. Nalewajski, Theor. Chem. Acc. 114, 4 (2005)
25. R.F. Nalewajski, K. Jug, in Reviews of Modern Quantum Chemistry: A Celebration of the Contributions

of Robert G. Parr, vol. I, ed. by K.D. Sen (World Scientific, Singapore, 2002), p. 148
26. R.F. Nalewajski, Chem. Phys. Lett. 386, 265 (2004)
27. R.F. Nalewajski, J. Phys. Chem. A 111 4855 (2007)
28. R. F. Nalewajski, Entropic Bond Indices from Molecular Information Channels in Orbital Resolution:

Ground-State Systems, J. Math. Chem. (in press)
29. R.F. Nalewajski, Mol. Phys. 104, 3339 (2006)
30. R. F. Nalewajski, Chemical Bonds through Probability Scattering: Information Channels for

Intermediate-Orbital Stages, J. Math. Chem. (in press)
31. K.A. Wiberg, Tetrahedron 24, 1083 (1968)
32. M.S. Gopinathan, K. Jug, Theor. Chim. Acta (Berl.) 63, 497, 511 (1983); see also: K. Jug.

M.S. Gopinathan, in Theoretical Models of Chemical Bonding, vol. II, ed. by Z.B. Maksić (Springer,
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